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Received 6 August 1976, in final form 30 November 1976 

Abstract. A phenomenological theory of dissipative elastic solids whose equations form a 
hyperbolic system is proposed. The Muller-Israel non-stationary transport equations for 
dissipative fluxes containing new cross-effect terms, as required by compatibility with 
irreversible thermodynamics, have been adopted. As opposed to usual conventional 
theories, which are parabolic and predict instantaneous propagation of wavefronts, the 
theory formulated, formed of 14 partial differential equations, all of 17th order, is 
hyperbolic and predicts, for all existing propagation modes, finite front speeds. The 
complete system of propagation modes is determined from the linearized equations. There 
are four mutually distinct non-trivial propagation modes, two for longitudinal waves and 
two for transverse waves. The slow transverse mode (quasithermal) was predicted for the 
first time, while the remaining modes were improved. 

1. Introduction 

The predictions of the theory of elasticity for wave propagation in solids, if dissipation is 
neglected, have been very well verified by experiments, at least for normally behaved 
solids. This is one of the most important reasons mitigating for the general acceptance 
of such a dynamical theory of non-dissipative elastic solids. However, theories includ- 
ing the effects of dissipation are much less satisfactory. The most common weakness of 
existing conventional theories (e.g. viscoelasticity in a Voigt solid) is that the resulting 
system of partial differential equations is not hyperbolic, which means that an infinite 
front speed for propagating waves is predicted. Thus the physical causality between 
wave source and signal reception is violated. The defect can be traced to the ommission 
of relaxation terms (i.e. non-stationary terms) in the transport equations for dissipative 
fluxes. 

Recent developments in kinetic theory (Grad 1949) have clarified the form of the 
transport equations for both the heat flux and viscosity tensor?. It is not important that 
this was done only for a dilute gas because it gave a firm basis for a revision of the 
transport equations. (Note that Maxwell (1890) was motivated, by an analysis of the 
nature of viscosity in gases, to propose his relaxed stress-strain formula.) The idea of a 
heat equation with relaxed heat flux, advocated by Cattaneo (1948) and others, 
gradually gained more acceptance. The Fourier equation including relaxation was soon 

t The idea of equivalence of the Boltzmann equation with an infinite system of moment equations (which 
can gradually be made explicit) can be traced back to Maxwell (see Ikenberry and Truesdell 1956). 
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proposed and used also in elasticity (see e.g. Eringen 1960, Popov 1967, Lord and 
Schulman 1967, Achenbach 1968, Norwood and Warren 1969, McCarthy 1970a, b, 
Kaliski 1965 and others). The most visible defect of Voigt’s transport equation for 
viscoelastic media was also amended by the theory of relaxation or by the use of a 
combined Maxwell-Voigt stress-strain law, But all this still has one weakness: the 
relaxed transport equations are considered as mutually independentt and compatabil- 
ity of their corrected form with thermodynamics was ignored. We notice that only 
dissipative fluxes are relaxed, not the reversible quantities and the role of the driving 
force and its response must not be interchanged as relaxation terms r d/dt are not 
invariant against a substitution t + -t. Thermodynamics of the Maxwell solid, where the 
total stress is relaxed, has not yet been constructed (Eringen 1967a, b). The same also 
applies to the Voigt-Maxwell solid. For the purely reversible quantities such as gkkl in 
equation (2.5), the effect of finite velocity propagation is still secured by the inertial 
term (d’Alembert’s force) in the equation of motion. 

If, for example, a traditional stationary Gibbs equation is used, together with 
relaxed equations (2.9H2.1 l), one deduces that the derivative of fluxes also appears in 
entropy production u (KranyS 1967, equation (1.32), McCarthy 1970a, b) which is 
incorrect. In reality, according to non-equilibrium thermodynamics, retaining sys- 
tematically all second-order terms in the entropy balance equation enables the more 
accurate form of the transport equations for dissipative fluxes to be predicted (Muller 
1967). The purpose of this paper is firstly, to propose a theory of an isotropic elastic 
dissipative continuum which is hyperbolic (requiring the relaxed transport equation), 
and at the same time, strictly consistent with the principles of irreversible ther- 
modynamics. As we will see, this requires the inclusion of some cross-effect coupling 
terms in the transport equations and a modified form of some thermodynamic equations 
such as, for example, the Gibbs equation. Secondly, we deduce all the possible 
propagation modes (in an unbounded medium) according to such a theory and compare 
them with some which are well known. 

2. Formulation of phenomenological theory of dissipative solid 

Internal friction (in a wide sense) in solids may be produced by several different 
mechanisms, and although ultimately these all result in mechanical energy being 
transformed into heat, two different dissipative processes are involved. These two 
processes are roughly the counterparts of viscosity losses and thermal conduction losses 
in the transmission of sound waves through fluids. For fluids the dissipative effects are 
due to viscosity and thermal conduction and these effects can be investigated analyti- 
cally (based on a phenomenological theory) in a quite satisfactory way if suitable 
transport equations are used. There is no doubt that this approach owes a great deal to 
the merit of kinetic theory, which clarified the structure of phenomenological theory 
valid for fluids in general. In spite of the fact that the behaviour is found to be more 
complex in solids, varying considerably with the nature of the solid, the phenomeno- 
logical theories considering dissipation in terms of internal viscosity and heat conduc- 
tion are generally used. Among them we can distinguish older theories like those which 

t If only some of the retained transport equations are used in the non-stationary form while others are left 
in a stationary form the whole system is not hyperbolic. Also disregarding heat flux is not to be recommended 
because it acts as the coupling between various kinds of energies. 
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use the Meyer-Kelvin-Voigt stress-strain relation together with Fourier’s law to form a 
parabolic system, and recent theories which use an appropriate transport equation 
converted into the non-stationary form, by including relaxation terms, to form a 
hyperbolic system together with conservation equations. In the process for including 
non-stationary relaxation terms in transport equations, one may eventually ask whether 
the additional new terms are of similar order of magnitude, what their form is, and one 
may show whether the new terms are compatible with non-equilibrium ther- 
modynamics. 

Indeed, thermodynamical considerations can be used to predict the more general 
form of transport equations for viscosity and heat conduction rather than the form of 
constitutive equations used in present theories. 

The purpose of this paper is to propose a phenomenological theory for dissipative 
solids which is hyperbolic and, at the same time, strictly consistent with non-stationary 
thermodynamics. 

In order to establish such a theory let us make the following postulates. 
(i) First we assume (as in Voigt 1892) that the total stress components in a solid 

can be expressed as a sum of the reversible or recoverable part of stress U k l  and the 
irreversible or dissipative part of stress y k l  (see also e.g. Truesdell and Toupin 1960 or 
Eringen 1967a): 

(2.1) 
* *  
Tkl = Tlk, :kl = u k l  + y k h  y k l  = %&, (k, 1 = 1, 2, 3) t .  

As a consequence of this postulate, ukl, as a fully reversible perfectly elastic stress, 
possesses the elastic potential $’ which is the reversible part of the Helmholtz free 
energy 4. In the following, for the sake of clarity, we limit ourselves only to small, so 
called infinitesimal deformations ekf although such a limitation is not necessary for the 
development of our treatise. With this in mind, we can write 

Assuming 

and making use of the fact that de and dq’ are both exact differentials one can deduce 
the equation (see Chadwick 1964, equation (2.28)): 

ce being the specific heat at constant strain. 

one deduces from equations (2.2) and (2.3) 
For isotropic, linearly elastic bodies (consistent with an infinitesimal deformation) 

t In order that the signs of all terms in the conservation and transport equations (written with zero on the 
right-hand side) be the same (as it is in Muller’s notation) we chose an opposite sign for gkt and ukt than is 
commonly used. 
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where the conventional notation has been adopted, i.e. 

U&, t )  is the displacement field, p denotes mass density 
I)) = du,/dt = til is the displacement velocity field 
e* !  = a(&) = f ( a k u l  +a&) is the deformation tensor (ek, = +Skless + (ek />)  

( & U / )  = a(,&)-&/ asus =(&l i , )  = ( e k l )  denotes the deviator of deformation rate 
(Y represents the coefficient of thermal expansion 
To is the temperature of the reference natural state 
A and p are LamC’s constants 
ASkl denotes remanent stress or initial stress in the natural state 
E is the specific internal energy. 

The tensor y k / ,  representing irreversible internal friction, which we will also write in 

Tss = r,  r,, = 0 (2.7)t 

is conventionally connected with the tensor of deformation velocity by the proportion- 
ality relation, as in rigid body mechanics, where the friction force is usually considered 
to be proportional to the relative velocity of the two bodies in contact: 

( a k v / >  = a ( k v l ) - ! S k l  a s v s  E ( a k a / >  = (e,,) 

(2.6) 

Equation (2.5) represents Hooke’s law for a thermally coupled elastic solid. 

the form 
CJ- -1 

k /  - 3 8 k l T  f T k h  

by equations (2.7) and (2.6) in analogy to Hooke’s law. Here A’ and p’  are moduli of 
viscosity which correspond to LamC’s constant. In viscoelasticity equations (2.8) 
together with (2.1) and (2.5) are used to describe a so called Voigt solid, while 
equations (2.5) are known as Newton’s laws in fluid theory. Equations (2.8) describe 
the instantaneous dissipative stress response (r and r k / )  arising from the strain 
velocities (e,, and ( e k l ) )  which contradicts physical causality and must therefore be 
corrected. For this correction we propose the following. 

(ii) We assume that transport equations for dissipative fluxes in an elastic con- 
tinuum have the form: 

A = 3 A ’ +  2p’; (2.9)t 

(2.11) 

where five new coefficients (in general dependent on T and p ) ,  in comparison to the 
stationary theory, are included. There are three relaxation times which are propor- 
tional to their corresponding transport coefficients, namely: 

T +TO+ = - A  ‘(ess + 3N ad,), 

r k l  +*k/  = - h ’ ( ( e k / ) + M ( a k q / ) ) ,  h’= 2p’ ;  (2.10) 

91 + ~ d /  = - K (dlT + NT d / ~  + MT dS7/,) ; 

7 * - / i 0 ,  7-4, 7 - K ,  (2.12) 

and two cross-effect coupling coefficients N and M. (The proportionality factors in 
equation (2.12) also may be dependent on T and p.) Our assumption is based on the 
following facts. 

t Instead of T one may use T’  = ?r/3 and N‘=  3 N ( X  = 3X) .  This last choice Leads to the more symmetrical 
equations. 
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(a) The equations (2.9)-(2.11) and also (2.12) were deduced by Muller (1967) for 
an isotropic continuum on the basis of thermodynamical considerations. The same 
result for a relativistic fluid continuum, covering this classical ‘low-temperature’ case, 
was also arrived at recently by Israel (1976). 

(6) The form of equations (2.9)-(2.12) is in agreement with the corresponding 
transport equation deduced from kinetic theory by Grad (1949) (equations (5.18) and 
(5.13) for T), if second-order terms are dropped. 

(c) The relaxation terms on the left-hand side also may be derived by application of 
relaxation theory, or the causality principle, expressing the fact that the dissipative 
fluxes, i.e. viscous stresses and heat flux, arise solely in the time-retarded response of the 
driving effect (see 0 1 and e.g. Thurston 1964, KranyS 1966b, 1967). 

The argument (a) by itself could be considered as sufficient justification of our 
equations (2.9)-(2.1 l), and the arguments (b) and (c), besides providing additional 
justification for (2.9)-(2.1 l ) ,  show how the results of kinetic theory are almost indepen- 
dent of the kinetic model used, and of approximation methods as well. Let us mention 
one more argument in favour of our transport equations. 

(d)  It is a very difficult task to deduce directly from microscopic theories the 
macroscopic equations of some solid, so as to prove our assumption, and even if it could 
be done for a particular solid there always remains the delicate question of how closely 
the solid approaches an abstract continuum. Let me propose the following intuitive 
argument. Thermal energy in a solid is transported mainly by two mechanisms; by 
quantized electronic excitations, which are called free electrons, and by quanta of lattice 
vibrations, i.e. phonons. The quanta undergo collisions of a dissipative nature, giving 
rise to thermal resistance in a medium. Both are usually described as a gas of 
quasi-particles satisfying the Boltzmann equation, so we have to expect that the 
appropriate transport equations for these quasi-particles will be very similar to those 
obtained from the kinetic theory for a gas of molecules. Actually, the relaxation time 
for heat flux of some solids was estimated by Peierls (1955) (see also Prohofsky and 
Krumhansl 1964). 

The aforementioned constitutive equations have to be completed by conservation 
laws for mass, linear momentum and energy (i.e. first principle of thermodynamics) in 
their standard forms, namely: 

% + p  alvl = 0, (2.13) 

(2.14)t 

and by the thermodynamical relation which follows: 

This is a statement of the entropy balance 
inequality. 

t See previous footnote. 

(2.16) 

equation and of the Clausius-Duhem 
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In order to show that the transport equations (2.9)-(2.11) are compatible with 
irreversible thermodynamics we wish to briefly outline the features of Muller’s theory. 
According to Muller one proceeds normally to derive the transport equations which are 
an approximate system of equations describing a non-equilibrium state of the material 
continuum not far from thermodynamic equilibrium. This derivation is based on the 
energy balance equation (2.15)1 and the entropy balance equation (2.16) in which we 
also have to rigorously retain terms of order two, 0(2)$ (and in the resulting transport 
equations, we obtain only terms up to order one, O(1)). All quantities in the ther- 
modynamic equilibrium state, i.e. the natural state, which do not disappear (e.g. p, T ) ,  
are considered to be of O(0); we consider all quantities to be of O( 1) which vanish at 
equilibrium (e.g. qf, .rr, T k l )  as well as the derivatives of those quantities. The novelty 
here is not the inclusion of O(2) terms in the entropy balance equation$ but the 
inclusion of O(2) terms in Gibbs’ equation§ and in the entropy flux definition. 

The constitutive assumptions according to Muller may be roughly summarized in 
the following way. In conventional thermodynamics the internal energy E = €(ek l ,  T )  
(equation (2.3)) possesses certain important distinguishing characteristics. It is a state 
function, that is, it is independent of the process followed in changing the state of the 
body. We may say that the internal energy is a function only of non-dissipative 
variables which are usually one order lower than dissipative variables. This conclusion 
is one also accepted by Muller and therefore from this point of view, there is no 
difference between a reversible E’ and an irreversible E .  On the contrary, the quantities 
appearing in the entropy balance equation (which is the expression for the fully 
independent, intrinsic second principle), i.e. q and Y;, are designed to describe the 
irreversibility of non-equilibrium processes and so they must also be explicitly depen- 
dent on the dissipative variables q, w and Tkl. Thus the starting assumption for 
dependence of specific entropy must be, for example: 

7 = v(ekl ,  T, 4h 7, T k f ) ,  (2.17) 

which is different from q’(ekf, T)  given by equation (2.3). By differentiation and some 
thermodynamical considerations, retaining only terms up to 0(2),  one can deduce the 
Gibbs’ equation: 

(2.18) 

where only the first three terms are usually kept, while the remaining terms, all of 0 ( 2 ) ,  
are not. The same considerations that apply to 7) apply also to the entropy flux Yf. Thus, 
we give a generalized definition of 9, as: 

Here, also, the conventional first term on the right-hand side is of O( 1); the remaining 
ones are of O(2). 

t The energy balance equation (2.15) as well as the equation of motion (2.14) and the equation of continuity 
(2.13) can also be simplified later, if desired, by retaining only the terms of order O(1) which correspond to all 
intents and purposes to the linearization of these equations. This will be done in this paper. 
$ Actually, in conventional theory as will become clear, some second-order terms in the entropy balance 
equation also appear, e.g. terms originating from &(qr/T) ,  though some are missing. 
8 Only one such O(2) term q k k ,  (if A = 0) is considered in conventional theory, 
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Upon combiningequations (2.16), (2.18), (2.19) and (2.15), retainingonly the terms 
up to O(2) and using 

T k / e k /  = r k / ( e k / ) ,  T k l d k q l  = r k l ( d k q l ) ,  T k i k l  = T k / ( f k / )  (2.20) 
and finally also equations (2.9)-(2.11), we obtain the explicit form for entropy produc- 
tion: 

(2.21) 

Conversely, the requirement U b 0 demands the quadratic form in dissipative 
quantities like equation (2.21) which together with equations (2.18), (2.19) and (2.16), 
lead to the choice of relations (2.9)-(2.11) and (2.12) which we wanted to show. 

It is evident that in U, as given by equation (2.21), all terms are of 0(2),  as they are in 
conventional parabolic theories. Due, however, to the fact that in equations (2.18) and 
(2.19) some terms of O(2) are missing, in the usual theories the expressions u~~~~~~~~~~~~ 
does not contain all terms of O(2). Consequently this is reflected in the incompleteness 
of the transport equations (2.9)-(2.11) where some terms of 0 ( 1 )  are missing. This is 
the reason why the entropy balance equation and transport equations in conventional 
theory are incomplete, the consequence of which is a violation of the causality principle. 

We also note that once we have derived transport equations (in which all terms of 
O( 1) are present), we no longer need the entropy balance equation. Then this equation, 
which has a somewhat special role, is necessary only if some further purely ther- 
modynamic considerations are needed. 

The first law of thermodynamics (2.15) can be written as follows if use is made of 
equations (2.4) and (2.5): 

(2.22) 

where &re,, and Tk&/ have been neglected being terms of 0(2) ,  as we have limited 
ourselves here to the linearized theory (see first footnote on previous page). Using (by 
virtue of equations (2.5) and (2.6)) 

(2.23) 

in equation (2.14), recalling that oI = U/  and setting A = 0 we arrive at the system of 
fourteen equations: (2.13), (2.14), (2.22), (2.9), (2.10) and (2.11) for fourteen unknown 
functions?: 

p, ul, T, r,  Tkh q/* (2.24) 

So the above mentioned system of equations, which is of 14th+3rd order (as 
equation (2.14) is of 2nd order in ul )  determines the unknown functions without 
recourse to the notions involved in the second principle. The equations (2.16) and 
(2.18) may be used, for example, when one wishes for some reason to know U or 77 or 
some thermodynamical function derived from q, such as the free energy 1+4 = E - qT etc. 
The proof that the proposed theory is really hyperbolic is given in § 6. 

The resulting form of stress-strain dependence for our dissipative elastic solid 
follows from equations (2.1), (2.5), (2.7), (2.9) and (2.10): 

- d k U l k  =a/A +(A + C L ) a l ( d k U k ) + C L d k d k U l - P  a/T 

t The quantities (2.24) will be called simply ‘moments’ as in a kinetic theory. Therefore a fourteen-moment 
discription means fourteen unknowns or a fourteen equations description. 
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a / k  f y l k  + (7' - f ) $ 8 [ , r s s  + ?$[k 
= - {[A - p (T  - TO)]8lk (A&&, + 2pelk) + ( A  ' a l k i s s  4- 2/-4 ' e l k  ) 

+ [(3A ON - iM) i8lk a s &  + ha(lgk)l). (2 .25)  

By contraction 1 = k : 
a,, + 7r + T O +  = - [{3[A +he,, - (T- TO>p] + 2 ~ e , , } +  bok,, + 3h0N dAs] (2.26) 

and we come back to equations (2.5) and (2.9). Equation (2 .10)  can be verified easily. 
Equation (2.25) represents our generalized form of the Voigt (or Maxwell-Voigt) 

constitutive equation, or, in other words, equation (2.25) is 'Hooke's law' generalized to 
a dissipative elastic medium. 

3. The linearized fourteen-moment equations and their Fourier transforms 

We limit ourselves to the case of an unbounded space filled with an immobile isotropic 
dissipative elastic medium in thermodynamic equilibrium and at the mechanical 
equilibrium reference state of no tension ( A  = 0) in which there is a forced disturbance 
of very small amplitude. Therefore, we assume that the governing equations which are 
quasilinear may be linearized near this equilibrium reference state, so that all coeffi- 
cients of differential equations will be considered as having constant values correspond- 
ing to the reference state (i.e. in the coefficients we set T+ Teq = To, p +peq and we will 
drop the suffix eq). 

The fourteen equations governing our problem are equations (2.13),  (2.14),  (2.22),  
(2.9),  (2.10) and (2.11) which, after being rearranged (as is mentioned in the text before 
equation (2.24))  and linearized read: 

p + p  a,Li, = 0, 

piil - ( A  f p ) d l  ( d k u k )  

(now only p = 2) at (3.1) 

(3.2) 

(3.4) 

ak dkul  f p dlT f 4alT + akT ik  = 0, 

pc,F++Ta,ri, +as4, = 0, (3 .3)  
T + TO& + A  O(a,~i, + 3 ~ 4 , )  = 0, 

3.1. Solution by Fourier transform 

In seeking a solution to the system of fourteen linear partial differential equations 
(3.1)-(3.6), we assume each of the unknown functions (2.19) to have the form of a 
propagating plane wave : 

(k = (O ,O,  K ) )  (3 .7)  
Q - Q,, = 6 e ~ ( - t - ~ k  .XI) 

where we have chosen the wavevector k orientated along the x3 axis. (w is a real 
number and K is complex.) 

The Fourier transform of the linearized set of equations (3.1)-(3.6) after some 
rearrangement, may be put in the matrix form (3.8):  
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where 

In the system of equations (3.8) $11 is no longer present due to the relation T,, = 0 
(equation (2.4)), as we must work only with independent unknowns. Because three 
equations are of second order in equation (3.8), our problem is really of order 17. 

The algebraic system of homogeneous equations (3.8) have a non-trivial solution if, 
and only if, the appropriate determinant of this system vanishes, namely: 

Ai-,(W,0)=0, ( W = o / K ) .  (3.10) 

This is the characteristic equation, and its solutions (eigenvalues W = W(o)) define the 
dispersion dependence of the complete set of eigenmodes belonging to our system. 

As is evident from equation (3.8) A17 is equal to the product of three lower order 
determinants: A17 = A5A5A7. Hence instead of the dispersion equation (3.10) we need 
investigate only the two much simpler equations: 

A5 = 0, (3.11) 

(3.12) 

Evidently equation (3.11) corresponds to waves with transverse polarization 
directed along the axes x1 or x2, while equation (3.12) corresponds to a wave with 
longitudinal polarization, i.e. polarization directed along x3. 

4. Transverse waves 

4.1.  General case (fourteen - or thirteen -moment description) 

The possible phase velocities W = w / K ,  with a transverse polarization, are given using 
equations (3.11) and (3.8) in dimensionless form by the equation: 

As = constant x W8 

where 

= O  (4.1) 

K 1  2 k = p M c , v ,  v =c,T. 

This equation can be reduced to the form 

As =constant x W( h@ - *)( h@ - *,) = 0 

(4.2) 

(4.3) 
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Therefore we can write down equation (4.4) also as 

(4.6) 

The complete characteristic polynomial for possible transverse waves, i.e. in both 
polarization directions x1 and x2, is 

( A d 2  = 0, (4 * 7) 

As being given by equation (4.3). (Equation (4.3) also says that for each polarization 
direction the propagation equation has the differential operator (called hyperbolic if 
WI,II< 00): 

&(a:- W?(w)A)($- W:I(~)A) (A = &a,). (4.8) 
In this expression the derivatives of lower order than fifth have been converted in the 
frequency dependence of W = W(w).) 

The zero root of equation (4.3) has to be associated with the mass flow velocity, 
which was chosen in our case to be zero. Then we have two modes? for transverse 
waves. Because W:S we will call the I-wave a fast transverse (or quasi- 
mechanical) wave and the 11-wave a slow transverse (or quasi-thermal) wave, whose 
existence is mainly due to heat conduction (as will be shown at the end of this section). 

The complex phase velocities WI,II, depending on the wave frequency through the 
expressions B ( w )  and z(o) (see equation (3.9)), give us information on both the 
effective phase speed Wi = w/Re K and the coefficient of absorption w/Im K. 

4.1.1. Limiting case when w +Co. The wavefront speed (signal speed) V for each wave 
mode can be found either from the complex W or from the real phase velocity w' as a 
limit: 

(4.9) V =  lim W(O) = lim w(B(w),  Z ( w ) ,  N ( w ) )  
W" w +OD 

but B(w) = Z(W) = N(w) = 1 by (2.9). 

4.1.2. Limiting case when K ,  h; A o + O .  If the thermal conductivity coefficient 
decreases to zero K + 0, which also means r+O by equation (2.12), then because of 
equation (2.11) 41 + 0, meaning elimination of heat conduction (and also of equation 
(2.11)) from the description. The same applies to and A O, so 

(4.10) 

i. We call W 2  a mode, which means one wave propagating in the positive (+ W )  and one in the negative ( -  w) 
sense, with the same speeds. 
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(It is quite natural to require 1 # 0 and K = 0, but the requirement h = 0 and K # 0 
although formally acceptable, is not so natural in the kinetic theory where h and K are 
connected together? if the higher order moment, i.e. heat flux, is retained. Accordingly 
we will call the second possibility a heuristic case.) 

4.1.3. Limiting case when w + 0. 

l i m Z = l i m  I - -  + l - i C o ,  
w - 0  w+O ( TL) 

or equivalently 

121 +CO> IBI + a, IN1 + CO 

(4.11) 

(4.12) 

but these results are those for an adiabatic dissipation-free case, because the simultane- 
ous transitions 

r+o, f+ 0, To-* 0, (4.13) 

also lead to the conditions (4.12), which, according to equation (4.10) lead to a 
cancellation of all dissipative fluxes and therefore to the adiabatic state. 

4.2. The adiabatic case (fiue -moment description) 

This case is included as a special, dissipation-free case of wave propagation when w -* 0 
or by equation (4.12), when 121 -*CO, and IBI -* 00 ([NI + 00 need not be considered as 
transverse waves are independent of m. Then from equations (4.5) and (4.6) it follows 
that 

(4.14) 

which is by virtue of definition (4.2) a well known result. 

4.3. The case with shear viscosity only (ten-moment description) 

This case with no heat conduction follows from equations (4.5)-(4.6) when we allow 
121 + 00 (see equation (4.10)). Doing this, we obtain: 

which means that the effective phase speed w‘ is (writing i2 = %J) 

?To give some idea of the orders of magnitude of the newly introduced coefficients, their values for a 
monatomic gas (see Grad 1949) where the bulk viscosity is not included are: 

i t This result is obtained also if we set the coupling coefficient shear/heat Y= Oin equations (4.5) and (4.6). 



Hyperbolic elasticity of dissipative media 70 1 

The wavefront speed equation (4.9) of the fast mode I (equation (4.15)) is 

a value greater than that in the adiabatic case and this value is very sensitive to the shear 
viscosity relaxation time which, when set to zero (as is usual in conventional parabolic 
theories), results in infinite signal speed. It is evident from equation (4.16) that for any 
frequency w > 0, W + ( w )  > kdiabatic. 
4.4.  The case without viscosity (eight-moment description) 

This case with heat conduction follows if we allow lBl+m, but then the result is the 
same as in the adiabatic case. We may conclude that the shear viscosity is mainly 
responsible for the dispersion of transverse waves. 

We have already seen in 0 4.3 that the absence of heat flow results in a stopping of 
the slow 11-wave; and that in 0 4.4 the absence of shear viscosity results in a disappear- 
ance of dispersion and identification of the I-wave with the adiabatic transverse wave. 
Therefore the 11-wave could also be called a transverse quasi-thermal wave. This mode 
is predicted here for the first time whereas the mode I (see equation (4.4)), which had 
already been treated (see Thurston 1964, equation (389)), is generalized due to the 
heat/viscosity cross effect. 

5. Longitudinal waves 

5.1. General case (fourteen-moment description) 

The possible phase velocities W = o / K  with longitudinal polarization are given by the 
following equatia 

L 

A7 = constant x W 

where 

, using equations (3.12) and ( 3 3 )  (in dimensionless form): 
L 

1 - W 2  -iP' 

L L 
-ip'W W 

2- L 
-i-AW 

3 

- i A o k  

- A  

-1 

2-  C L  
- - A A -  

3 v  
Bk = O  (5.1) 
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This equation can be reduced to the form 
L L  L L  L 

A, = constant x w'( w2 - w:)( W' - w?~) = 0, 

where 
L 1 
W& = -[6 * (E2 - 4AlC)'"], 

2A 

(5.3) 

(5.4) 

and 

A = dN., ( 5 . 5 )  

6 = (1 +s)B~~+3(~+~AoB)Z+~-N+3A; iCC2N+fAA0(3X)2B,  (5.6) 

2 -  
3 C L  

= hBN +-AA( 1 + (1  + S)&' - 2 p  ':.M)N 

1 2 + 7 AAo( 1 + 3( 1 + 6)(3~Y)~ - 2 p  ' t (3X))d + G A A ' ~ ( A  - ~ J Y ) ~ .  (5.7) 

From equation (5.3) we see that there are once again two longitudinal modes, and 

because of W: 3 W;I (from equation (5.4)), we call the I-wave a fast longitudinal wave 
or 'quasi-mechanical wave' (or sound wave) and the II-wave a slow wave or 'quasi- 
thermal wave'. Let us turn to some special cases. 

C L  

L L  

5.2. The adiabatic case (five-moment description) 

This case can be obtained from equation (4.12) as a limiting case for IfiI + CO, 
and 121 + CO. Effecting those limits on equations (5.4)-(5.7)' we obtain 

+ CO 

(5 .8 )  
w:= L 1 + 8, &=o, ( a s x = o )  e 

where S is the so called thermoelastic (dimensionless) coupling coefficient: 

L 
(by equation (5.2)). The well known result W:= 1 follows from equation (5.8) for the 
'uncoupled' case, i.e. when stress (2.5) is not directly influenced by heating ( p  = 0; 
s = 0) .  

5.3. The case when dissipation is due only to viscosity (eleven-moment description) 

This case follows from the general formulae (5.4)-(5.7) with 121 + 00 (i.e. elimination of 
heat flux; see equation (4.10)) which lead to the expressions 

2 - 1  1 1 L b:= (1 +~)+-A-+-Ao----. w,: = 0, 3 B ( w )  3 N ( o ) '  (5.10) 

telling us that the slow quasi-thermal mode disappears and the main acoustical mode 
survives giving, as a result of bulk and shear viscosity, a higher phase velocity than the 
adiabatic sound speed. This would probably be a satisfactory approximation for a lot of 
practical purposes. 
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If we eliminate either bulk viscosity (IN( + 00) (resulting in a thirteen-moment 
description) or shear viscosity (IBI + 00) (leading to a nine-moment description) both 
propagation modes survive; only the dispersion curves are modified accordingly. 

5.4.  The heuristic case when dissipation is due to heat conduction only (eight-moment 
description ) 

This case follows from equations (5.4)-(5.7) with 00 leading to the two 
non-trivial modes: 

+ CO and 

L ") [( S)2+4a$] 1/2 , 
2 w & =  ( l+S)+-  * ( l+6) - -  ( z  (5.11) 

as was found by Popov (1967) (equation (7)) and others. This same case was studied 
also by Chadwick and Sneddon (1958) who used the Fourier transport equation. A 
consequence of this is that the governing equations are not completely hyperbolic. 
Anyway, the heuristic casest cannot be trusted much due to neglect of viscosity effects 
which are of the same order as the heat conduction effect, which has been retained. 

6. The hyperbolicity of the theory 

The requirement that our system of fourteen partial differential equations (3.1)-(3.6) 
be hyperbolic can be formulated (Courant and Hilbert 1966, §§ 111, 3 and 6) in the 
following way. If the characteristic equation of the system under consideration, which 
in our case is the characteristic polynomial AI7 = (A5)2A7 (A5 and A7 being given by 
equations (4.3) and (5.3) respectively) in the limit w * CO: 

lim AI7=constantx lim (+--%)'(+- Wi)'+(+- h;)(l!V-h';l)*=O 
(6.1) w-+m w -+m 

possesses only real and finite solutions for all roots, then the system is hyperbolic. First, 
five zero roots W5 = 0, as well as W& (given by equation (4.4)) and WITII (given by 
equation (5.4)), fulfill this condition of reality and finiteness as long as < CO, A' < CO 

and "<CO. This is fulfilled if and only if, simultaneously (cf equation (5.2)), we have 

L 

?>O, ro>o, r>o ,  (6.2) 
because all our coefficients in (4.4) and (5.4) are real. 

If only one of the relaxation constants is equal to zero then all the propagation wave 
modes have infinite front speeds. We notice that relaxation constants (6.2) are definitely 
responsible for the finiteness of wavefront speeds and therefore for 
guaranteeing the causality principle and therefore cannot be neglected. 

7. Comparison with other theories and results 

This will help us determine the differences and weaknesses of those particular theories. 
Usually, either: (i) the heat flux is introduced via a stationary Fourier law (see § 7.4), 
then the whole system of equations is not hyperbolic; or (ii) one introduces the relaxed 

t See 8 4.1.2, last paragraph. 
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heat flux equation but the internal viscosity is omitted (see 0 7.3); or (iii) heat flux is 
neglected completely (see 00 7.1 and 7.2). Let us consider first the possibility (iii) where 
the main weakness is the almost complete disregarding of thermodynamics (equations 
(2.15) and (2.11) have been dropped) and transport equations for viscosity are usually 
reduced to one (corresponding to equation (2.9)) as only one-dimensional propagation 
is being studied. 

7.1. The four-moment description 

This is the most simple description without the use of a transport equation, but where 
only an equation of motion is used (as the continuity equation (2.13) need not be 
considered if we are not interested in density variations), where the dissipation is taken 
into account simply by the inclusion of the frictional damping force which is propor- 
tional to the velocity; namely, 

This equation with equation (2.23) (where p = 0) leads to the telegraph equation for 
both transverse and longitudinal waves: 

iil + bul= c2  Aul, (c = CL, CL) (7.2) 

which is hyperbolic. The phase speed is 
1/2 -1/2 

W+(o)=c . /2 [ l+ ( l+g)  ] ==c (W'(c0) = c)  (7.3) 

showing that the dispersion dependence goes in the opposite sense compared to our 
results where w ' ( w )  > cdiabatic which has been confirmed by experiments both in 
fluids and solids (see 0 8). References to equation (7.2) can be found mostly only in 
older literature (cf Lamb 1925 0 23); nevertheless equation (7.2) was used also by 
Weber (1961, equation (8.34)), whose work was of course criticized (see e.g. Maugin 
1974). 

7.2. The six-moment description 

(No shear viscosity or heat flux is considered.) This was applied to the propagation of 
longitudinal waves by Hillier (1949) (letting aside p, this is a third-order problem) 
along a viscoelastic filament where a stress-strain relation, which is the combination of 
Maxwell (1890) and Meyer-Kelvin-Voigt (Voigt 1892) formulae, was used (see Kolsky 
1953, equation (5.44)) or a formally identical expression is that of Voigt with relaxation 
(see Thurston 1964, equation (381)): 

u+-u=- 77, . E 3 : ,  E +----"€. 773' 
Eb+E, EI,+E, Eh+E, (7.4) 

In this way, Hillier deduced an hyperbolic third-order equation for quite reasonable 
dispersion and absorption curves. It is clear that (7.4) is of considerable formal similar- 
ity with our equation (2.26). However, there are two important differences. First, 
equation (2.26) includes a coupling to heat flux via the coefficient N. In equation (7.4), 
of course, heat is not considered but, even if it were, one is obliged to use equation (7.4) 
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in the same form, because from Maxwell-Voigt theory there are no indications on how 
to include such a generalization. Second, in equation (2.26) only the irreversible part of 
&, i.e. Tlk, is relaxed (see term T O + ) ,  as required by time irreversibility of dissipation 
processes?, while in equation (7.4) U plays the role of our total stress tensor &. This is 
an important difference as for a Maxwell solid model, and models derived from it, the 
total stress is irreversible. The same applies to Boltzmann's generalization (often 
thought to be always sufficiently general) of the stress-strain relation. Firstly, coupling 
with heat conduction is totally missing; secondly, if the memory function is an odd (as it 
usually is) function of time, total stress on the left-hand side is, of course, irreversible. 

The Voigt stress-strain relation alone is not correct for high frequencies as it leads to 
the parabolic 'wave equation' whereas Maxwell's relation alone, resulting in an 
hyperbolic wave equation, has another inconvenience: if a solid is strained by a definite 
amount and held at this strain, the stress will relax with time. The Hillier theoretical 
dispersion and absorption curves are, at least qualitatively, confirmed by experiments 
(see Kolsky 1953, p 161, Nolle 1949, Ivey et a1 1949). 

7.3. An eight-moment description 

This description, neglecting both shear and bulk viscosity but using a relaxed heat flux 
equation like equation (2.11) (with N = M =  0 of course) was proposed and used by 
many authors (e.g. Popov 1967, Lord and Schulman 1967, Achenbach 1968, Norwood 
and Warren 1969). Their results conform to phase speed dispersion for the correspond- 
ing special case outlined in § 5.3. Two longitudinal modes are given by equation (5.1 1). 
Of course no dissipation of transverse waves exists according to this description. 

7.4. The conventional fourteen -moment description 

This may be called a description using Voigt's stress-strain relation as a viscosity 
transport equation (equation (2.25) with T' = f = N = M = 0) and Fourier's law (equa- 
tion (2. l l )  with T = N = M =  0) as a heat flow transport equation. Taking into account 
that: 

(7.5) 

and N = M =  0 (i.e. N = J t  = 0) in formulae (4 .3 ,  (4.6) and then in equations 
(5.4)-( 5.7), we obtain : 

1 +i io ( iLf ) ,  dt;: = 0, (7.6) dt;2 = 1 +io- -= 
l h  
2 Pc: 

for the transverse wave modes, and 

for the longitudinal modes. This description is valid only for nearly stationary proces- 
ses, and the results (7.6) and (7.7) only for the relatively low frequency range 

f See § 1. 
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sup(&, T O W ,  m}<< 1. The front speeds of all propagating modes are infinite (see 
equations (4.9), (7.6) and (7.7)), as is the case in every parabolic theory. Often, authors 
applying such descriptions to wave propagation discuss only wave absorption in order to 
avoid discussion of the absurd dispersion dependence for high frequencies. This has 
been a practice also in fluid theory since the time of Kirchhoff’s (1868) publications. 

We have seen that the proposed non-stationary fourteen-moment theory is there- 
fore more general than any particular example given above and that it covers every 
typical case (commonly used at the present time) except the case outlined in 0 7.1. We 
see further that it unifies them, moreover giving finite front speeds for all propagation 
modes. The proposed theory requires the knowledge of five new coefficients, of which 
those relaxation times, occasionally used, may be estimated more easily than N and A4 
(for some materials T- 10-”-10-’3 s; see Peierls 1955, p 135; T” and 7 probably only 
differ by a few orders of magnitude?). If one sets, for simplicity, N = M = 0, then 
dynamical couplings between dissipation fluxes are removed and the formulae (5.4) and 
(4.4) are simplified as a result and, furthermore, the slow transverse wave disappears 
( &I1 + O I L  

8. Experimental investigation of wave propagation in dissipative continua and solids 

There exists a great amount of literature on this subject, and we can therefore limit 
ourselves to some selected sources. As a general reference, let us quote Mason 
(1966-75). Let us at least try to choose some experimental results connected with the 
results of the analysis made in this paper, which are the dispersion and adsorption 
frequency dependences of existing propagation modes in unbounded dissipative solids. 

Theoretically it was found that the phase velocity at high frequency of each mode is 
greater than at low frequency and signal speed (at w + 0;)) is finite. A plot of W: or 
against ln(w7) has the form of a typical ‘S’ dispersion step with an inflection point near 
UT = 1, whereas NI or rises almost linearly turning near UT = 1 and then 
approaches asymptotically its signal value. The absorption curve for I-waves when 
plotted against ln(w7) is a bell-shaped curve with a maximum near WT = 1. 

The general dispersion feature was verified by observation in monatomic and 
polyatomic gases (see Greenspan 1965, Mitin and Yakovlev 1971, Kneser 1965), at 
least for the longitudinal fast mode. Gases are covered of course explicitly by Muller’s 
theory§, which in the case of monatomic gases, coincides formally with the linearized 
thirteen-moment method of Grad. Muller’s theory also covers fluids for which some 

t 7’ and F might be estimated based on Maxwell-Voigt stress-strain relations. 
$The constitutive equations of microviscoelasticity (Eringen 1967b, equations (3.18) and (3.19)) in the 
relaxed form (but without dynamical coupling) compatible with the present thermodynamics are as follows: 

L 

L 

w + r‘”+ = ( 3 h ’ + 2 p ‘ + ~ ’ ) i , , ,  s + 7 ‘ * ’ ~ = ( 3 ~ ‘ + B ’ + y ’ ) ~ , , ,  

7 k [  + 7(3)fkf = (2@‘+  K’)(ik/)+K’i[k.], skf +7(4)sk l  = @’+ v‘)(dk./)+(B’-  Y ’ ) d [ k . / ] ,  
where 

7 k f  = Dtkf  -&kfDtss. skl E D m k /  - 4 6 k f m r s ,  7 D f s .  s E Dms,. 

Of course, the reversible parts of the rkl  and m k l  remain non-relaxed, namely: 

Etk l  = A € d k /  + (CL + K k k /  f pet/, Emkf = & , 8 k f  + 8 4 k . r  + Y41.k. 

8 The formula (36) in Muller (1967) is incorrect. The correct value of heat signal speed is given in KranyS 
(1972), equation (5 .52) .  
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experimental results can be found in Litovitz and Davis (1965). For the measurement 
of dispersion and absorption in solids we refer to Kolsky (1953, chap 6, and references 
therein), particularly to Nolle (1949), Ivey et a1 (1949) and to Knopoff (1965). 
Sometimes it is difficult to find out ‘impartial’ measurements of the dispersion, based 
uniquely on observation, as the experimentalists try to interpret their results, or 
calculate some necessary auxiliary qualities using conventional (often suspect) formulae 
especially if they are using the indirect method also based on some theory. 

9. Conclusions 

A phenomenological theory for a dissipative elastic solid whose equations form a 
hyperbolic system is proposed. The Muller-Israel non-stationary transport equations 
for dissipative fluxes containing new cross-eff ect terms, as required for compatability 
with the entropy principle expressed by the balance equation with all second-order 
terms, have been adopted in order to guarantee physical causality and the possibility of 
describing fast, transient processes, In the adaptation of Muller’s theory, which is a 
continuum theory, to elasticity, the principal step was the replacement of the viscosity 
tensor pij  by the purely irreversible (or dissipative) part of the stress tensor Yij in the 
transport equations. The theory formed from the system of fourteen partial-differential 
equations, of total order seventeen, is hyperbolic. Five new transport coefficients (in 
general dependent on temperature and density), appear in the transport equations, in 
contrast to conventional parabolic theories: however, three of them (relaxation times) 
have been investigated previouslyt, in connection with some simpler constitutive 
equations like the Maxwell-Voigt laws. It would be desirable to have experimental 
values of those constants necessary to make a quantitative comparison between theory 
and experiments for various solids$. 

The complete system of propagation modes has been determined from the fourteen 
linearized equations. There are four mutually distinct non-trivial propagation modes; 
two for longitudinal waves, and two for transverse waves. The slow transverse mode is 
predicted here for the first time, while improved expressions for the remaining modes 
have been found. The wavefront of each mode propagates with a finite velocity, 
proving directly the hyperbolicity of the theory. The wavefront speeds of the modes 
(being always higher than those for dissipation-free propagation), represent the speed 
of propagation of the characteristic surfaces on which a discontinuity of some quantities 
can occur, and therefore represent weak shock wave speeds, or, more exactly, shock 
precursor speeds. 

Many results on wave propagation, based on various parabolic theories of different 
order (but never higher than order 17, which is our case), have been published. The 
parabolic theories of course lead to an infinite signal speed for almost all propagation 
modes! Such theories are thus applicable only to phenomena which can be called 
‘quasi-stationary’, i.e. slowly varying on space and time scales characterized by W17 and 
the relaxation time 7. This is not satisfied for many phenomena involving steep 
gradients or rapid variations, an example of which would be just a fast change near the 
front of the wave pulse. For conventional theories containing relaxation terms in 

t More exactly two relaxation coefficients appearing in the Maxwell and Maxwell-Voigt relations play a 
similar but not necessarily identical role to our 7 and E See 5 1. 
$ See first footnote on p 700. 
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transport equations like those of a Maxwell solid and Voigt-Maxwell solid respectively, 
thermodynamics has not been constructed?. 

It is reasonable to expect that the front speed of a thermal (or diffusion$ or viscosity) 
wave is finite and well defined, its value being of the order of the speed of adiabatic 
sound. In the past this has not been accepted. A diffusion-like parabolic equation 
ri = a Au was conventionally used for the description of those phenomena and it was 
believed that there was no definite velocity which could be defined as the velocity of 
heat or diffusion. The argument for this was, for example, given by Maxwell. If we 
attempt to measure this velocity by measuring the time necessary for the production of a 
given amount of disturbance at a given distance from the source of the disturbance, we 
find that the smaller the selected value of the disturbance the greater the velocity will 
appear to be, for however great the distance, and however small the time, the value of 
the disturbance will differ mathematically from zero. Even now it is difficult, if not 
impossible, to measure directly, with a prescribed accuracy, the heat (or diffusion) signal 
speed. Fortunately it is possible to do it indirectly by the measurement of the speed of 
high frequency harmonic components of sound accompanied by heat conduction. These 
speeds converge gradually to the definite signal speed. 

It was Maxwell (1867) himself who derived, from kinetic theory, a non-stationary 
transport equation for heat, but he then treated the time derivative of heat flux as 
negligible in most cases and thus confirmed the old Fourier law. The next occasion 
where that old inadequacy of transport theory could be definitively removed was 
missed, when the so called Hilbert-Chapman-Enskog normal solution method was 
applied (1912-22) to solve the Boltzmann kinetic equation. As this method (in 
principle, a small parameter method requiring 07 << lo), contains assumptions which 
result in the elimination of temporal derivative terms of transport equations, the form of 
the Fourier (and Fock) law was confirmed, which greatly increased the confidence of 
physicists in atemporal transport laws. 

Recent development in kinetic theory (Grad 19491)) have confirmed the almost 
simultaneous, great number of propositions for the improvement of the 
phenomenological constitutive laws for dissipative fluxes made by many authors (see 
Cattaneo 1948, 1958, Vernotte 1958, 1961, Eringen 1960, Nettleton 1960, Chester 
1963, Prohofsky and Krumhansl 1964, Kaliski 1965, KranyS 1966b, Weymann 1967, 
Popov 1967, Lord and Schulman 1967, McCarthy 1970a, b, Simons 1972, KranyS and 
Teichmann 1974, and others). These have, consequently, been placed on a more sound 
theoretical basis. Nevertheless, parabolic theories are still popular enough to occupy 
their unjustified place in the textbooks of physics. 
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